Gorio Tech Blog search

MovieQA(Movie Question Answering, MovieQA 논문 설명)

|

이 글에서는 MovieQA: Understanding Stories in Movies through Question-Answering에 대해 알아보고자 한다.

VQA task는 이미지(Visual, 영상으로도 확장 가능)와 그 이미지에 대한 질문(Question)이 주어졌을 때, 해당 질문에 맞는 올바른 답변(Answer)을 만들어내는 task이다.

MovieQA는 Vision QA의 확장판과 비슷한 것이라고 보면 된다. 그러나 크게 다른 점은 사진 한 장과 QA셋이 아닌 Movie Clip과 QA셋으로 학습 및 테스트를 진행한다는 것이다. 사진이 영상으로 바뀐 만큼 당연히 난이도 역시 증가하였다.

MovieQA 홈페이지는 http://movieqa.cs.toronto.edu/home/ 이다.

중요한 부분만 적을 예정이므로 전체가 궁금하면 원 논문을 찾아 읽어보면 된다.


MovieQA: Understanding Stories in Movies through Question-Answering

논문 링크: MovieQA: Understanding Stories in Movies through Question-Answering

초록(Abstract)

우리는 video와 text 모두를 통해 자동적 스토리 이해를 평하가는 MovieQA 데이터셋을 소개할 것이다. 이 데이터셋은 408개의 영화(movie)에 대한 아주 다양한 의미의 14,944개의 질문으로 이루어져 있다. 이 질문들은 ‘누가’ ‘누구에게’ ‘무엇을’ ‘어떻게’ ‘왜’ 했는지까지의 범위를 포함한다. 각 질문에는 5개의 답이 있는데 1개만 맞는 답이며 4개는 사람이 직접 만든 가짜 답이다. 우리의 데이터셋은 영상클립, 줄거리, 제목, 자막, DVS 등 많은 소스들을 포함한다는 점에서 유일하다. 우리는 이 데이터셋을 다양한 통계적 방법으로 분석했으며 존재하는 QA 기술들을 확장하여 열린 의미의 QA로 하는 것은 어렵다는 것을 보일 것이다. 우리는 이 데이터셋을 평가방법과 함께 일반에 공개하여 도전을 장려할 것이다.

ovieQA Dataset

서론(Introduction)

이미지 태깅, 물체인식 및 분할, 액션 인식, 이미지/비디오 캡셔닝 등 많은 시각적 task에서 레이블링된 많은 양의 데이터가 사용 가능해진 것과 함께 딥러닝에서 빠른 발전이 있었다. 우리는 시각장애가 있는 사람들을 위한 보조적인 해결책이나, 일반적인 framework에서 이런 모든 task들을 추론에 의해 실제 세계를 전체적으로 인식하는 인지로봇과 같은 application에 한 걸음 더 다가갔다. 그러나 정말 ‘지능적인’ 기계는 동기, 의도, 감정, 의사소통 등 높은 수준의 것을 포함한다. 이러한 주제들은 문학에서나 겨우 탐험이 시작되었다.

(눈에 보이는) 장면을 이해하는 것을 보여주는 훌륭한 방법은 그것에 대한 질문-답변을 하는 것이다. 이러한 생각은 각 이미지에 대해 여러 질문들과 다지선다형 답변을 포함한 질문-답변 데이터셋을 만드는 것으로 이어졌다.
이러한 데이터셋은 RGB-D 이미지 또는 Microsoft COCO와 같은 정지 이미지의 거대한 모음집에 기반한다. 전형적인 질문으로는 ‘무엇이(what)’ 거기에 있고 ‘어디에(where)’ 그것이 있는지와 같은 것, 물체가 어떤 성질을 갖는지, 얼마나 많은 ‘특정 종류의 물건’이 있는지 등이 있다.
이러한 질문들은 전체적인 자연에 대한 우리의 시각적 알고리즘을 확인시켜주기는 하지만, 정지 이미지에 대해 물어볼 수 있는 태생적인 한계가 존재한다. 행동과 그 의도에 대한 높은 수준의 의미 이해는 오직 순간적, 또는 일생에 걸친 시각적 관찰에 의한 추론에 의해서만 가능하다.

MovieQA Dataset

영화(Movies)는 사람들의 삶과 이야기, 성격에 대한 높은 수준의 이해, 행동과 그 이면에 숨겨진 동기와 같은 것들을 이해할 수 있도록 하는 짤막한 정보를 우리에게 제공한다. 우리의 목표는 ‘복잡한 영상과 그에 맞는 텍스트(자막) 모두를 포함한 것을 이해하는 기계’를 측정하는 질문-답변 데이터셋을 만드는 것이다. 우리는 이 데이터셋이 다음 수준의 자동적인 ‘정말로’ 이해를 하는 기계를 만드는 것을 촉진하는 것이 되었으면 한다.

이 논문은 영화에 대한 거대한 질문-답변 데이터셋, MovieQA를 소개한다. 이는 408개의 영화와 14,944개의 5지선다형 질문을 포함한다. 이 중 140개의 영화(6,462개의 질답)에는 영화의 질문-답변 부분에 해당하는 time stamp가 붙어 있다.
이 질문들은 ‘누가’ ‘무엇을’ ‘누구에게’ 같이 시각적으로만 풀 수 있는 것과 ‘왜’ ‘어떻게’ 무슨 일이 일어났냐는 시각정보와 대사(텍스트)를 모두 사용해야만 답을 추론할 수 있는 질문들을 포함한다.
우리의 데이터셋은 영상클립, 제목, 자막, 줄거리, DVS를 포함하는 다양한 출처의 정보를 포함하는 유일한 데이터셋이다. 우리는 이를 통계적으로 분석할 것이며 또한 존재하는 질답 기술을 우리의 데이터에 적용하고 이러한 open-ended 질답이 어려운 것을 보일 것이다.
우리는 leaderboard를 포함한 온라인 벤치마크 사이트를 만들어 두었다.


관련 연구(Related Works)

  • Video understanding via language: 영상 범위에서 시각 및 언어정보를 통합시킨 연구는 더 적은 연구만이 존재한다. LSTM을 사용한 영상클립에 캡션을 다는 것 등이 있었다.
  • Question-answering: 자연언어처리에서 인기 있는 task이다. Memory network나 deep LSTM, Bayesian approach 등이 사용되고 있다.
  • QA Datasets: NYUv2 RGB-D와 같은 데이터셋이나, 100만 단위의 MS-COCO 데이터셋 등이 있다.

MovieQA 데이터셋(MovieQA Dataset)

앞서 언급했듯이 408개의 영화와, 위키피디아에서 가져온 줄거리(시놉시스)를 포함한다. 또한 영상, 제목, DVS, 대사 스크립트를 포함한다.

이 부분의 주된 내용은 영화, 질문, 답변에는 어떤 종류가 있고, 어느 비율만큼 어떤 것이 있는지에 대한 통계 자료들이다. 자세한 내용은 궁금하면 논문을 직접 읽어보는 것이 빠르다.

MovieQA Dataset Statistics
MovieQA Dataset Statistics
MovieQA Dataset Statistics
MovieQA Dataset Statistics

다지선다형 질문-답변(Multi-choice Question-Answering)

여기서는 질답을 위한 여러 지능적인 기준선(intelligent baselines)를 조사하려 한다.

  • $S$를 이야기(줄거리, 제목, 비디오 샷을 포함한 어떤 정보든 포함)라 한다.
  • $q^S$는 하나의 질문이다.
  • ${a^S_j}^M_{j=1}$은 질문 $q^S$에 대한 여러 답변이다. 여기서 $M=5$이다(5지선다형이므로).
  • 그러면 다지선다형 질답의 일반적인 문제느 3방향 득점 점수 $f(S, q^S, a^S)$로 나타낼 수 있다.
    • 이 함수는 이야기와 질문이 주어졌을 때 답변의 “Quality”를 평가한다.
  • 우리의 목표는 이제 $f$를 최대화하는 질문 $q^S$에 대한 답변 $a^S$를 선택하는 것이다:

[j^\ast = \text{argmax}_{j=1 … M} \ f(S, q^S, a^S_j)]

아래는 모델의 한 예시이다.

MovieQA Dataset Statistics

모델은 ‘The Hasty Student’, ‘Searching Student’, ‘Memory Network’, ‘Video baselines’ 등을 포함한다.

결론(Conclusion)

이 논문에서는 영상과 텍스트 모두를 아우르는 자동적 이야기 이해 평가를 목표로 하는 MovieQA 데이터셋을 소개하였다. 우리의 데이터셋은 영상클립, 제목, 대사 스크립트, 줄거리, DVS 등 다양한 출처의 정보를 포함한다는 점에서 유일하다. 우리는 여러 지능적인 기준선과 우리의 task의 난이도를 분석하는 원래 존재하던 질답 기술을 연장시키기도 했다. 평가 서버를 포함한 우리의 벤치마크는 온라인에서 확인할 수 있다.


참고문헌(References)

논문 참조!


모델들에 대한 자세한 설명들은 생략하였다. Student 모델같은 경우에는 이름부터 꽤 흥미롭기 때문에 한번쯤 찾아보는 것을 추천한다.


Comment  Read more

VQA(Visual Question Answering, VQA 논문 설명)

|

이 글에서는 VQA: Visual Question Answering에 대해 알아보고자 한다.

VQA task는 이미지(Visual, 영상으로도 확장 가능)와 그 이미지에 대한 질문(Question)이 주어졌을 때, 해당 질문에 맞는 올바른 답변(Answer)을 만들어내는 task이다.

아래는 서울대학교 공대뉴스광장을 인용하였다.

VQA Challenge는 2016년 CVPR을 시작으로 매년 개최되며, 1년마다 발전된 기술을 평가하고 시상하고 있다. 2017년부터는 같은 질문에 비슷한 이미지를 보여주고 다른 답변을 하는 데이터를 VQA 2.0 데이터셋 통해 수집한 후 인공지능의 유효성을 엄밀히 평가한다.
예를 들어 ‘누가 안경을 쓰고 있나?’라는 질문에 비슷한 이미지가 주어지면 ‘남자’ 또는 ‘여자’의 답을 가질 수 있도록 데이터의 분포를 고려하는 것. VQA 2.0 데이터셋은 20만 개의 이미지에 대해 110만 개의 질문과 1100만 이상의 답을 가지며, VQA 1.0보다 1.8배의 데이터를 가지고 있다.

VQA Challenge는 컴퓨터비전패턴인식학회(IEEE Computer Vision and Pattern Recognition, CVPR) 워크샵 중 하나이며, VQA Homepage에서 매년 열린다. 관심 있으면 클릭해 보자.

국내 연구팀의 대표적인 성과로는 2016년 네이버랩스 2위, 2018년 서울대 장병탁교수팀 2위가 있겠다.

VQA Challenge라고 하는 것은 Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh 등의 연구자가 일종의 Challenge로서 제안한 것이기 때문에, 이를 중심으로 설명한다. 그렇기 때문에 논문이기도 하면서 동시에 새로운 task를 제안하겠다는 느낌이 강하다.

중요한 부분만 적을 예정이므로 전체가 궁금하면 원 논문을 찾아 읽어보면 된다.


VQA: Visual Question Answering

논문 링크: VQA: Visual Question Answering)

초록(Abstract)

이 논문에서는 VQA task를 제안한다. VQA task는 이미지(Visual, 영상으로도 확장 가능)와 그 이미지에 대한 질문(Question)이 주어졌을 때, 해당 질문에 맞는 올바른 답변(Answer)을 만들어내는 task이다.
VQA를 성공적으로 수행하기 위한 시스템은 이미지 captioning을 하는 시스템보다 더 높은 수준의 이미지 이해도와 복잡한 추론능력을 가져야 한다. 또한 (간단한 수준의 답변만 하는 것은 좋지 않기 때문에 이를) 자동으로 평가하는 것도 가능해야 한다. 우리는 25만 장의 이미지와, 76만 개의 질문, 1000만 개의 답과 그에 대한 정보를 제공한다. 많은 기준과 방법들은 사람의 수행능력과 비교한다. VQA Demo는 CloudCV에서 볼 수 있다.

참고) 2019.04.17 현재 논문에 링크된 CloudCV Demo는 404 error가 뜨는 중이다.


서론(Introduction)

Computer Vision(CV), Natural Language Processing (NLP), Knowledge Representation & Reasoning (KR)를 결합한 이미지 캡셔닝(captioning)은 지난 몇 년간 급격히 발전해 왔다. 그러나 이 task는 별로 “AI-complete”하지 못하다(그다지 인공”지능”스럽지 않다).
그러면 “AI-complete”하지 못하다는 것은 무엇인가? 이 논문에서는 좀 더 자유로운 형식에 열린 형태인 VQA(Visual Question Answering)을 제안하고자 한다. 이러한 답변을 제대로 하기 위해서는 다양한 AI 능력들이 필요하다:

  • 세밀한 인식(“이 피자엔 어떤 종류의 치즈가 있는가?”)
  • 물체 감지(“얼마나 많은 자전거가 있는가?”)
  • 행동인식(“남자는 울고 있는가?”)
  • 지식기반 추론(“이것은 채식주의자를 위한 피자인가?”)
  • 상식 추론(“이 사람은 20/20 시력을 갖고 있는가?”, “이 사람은 회사를 원하는가?” 참고: 20/20은 1.0/1.0과 같음)

또한 VQA 시스템은 자동으로 평가가 가능해야 한다. 이 논문에서는 열린 문제(open-ended, 답변의 가능성이 다양함)와 다지선다형(multiple-choice) task를 둘 다 본다. 다지선다형 문제는 열린 문제와는 다르게 단지 정해진 답변 중 옳은 것을 고르기만 하면 된다.

데이터셋은 COCO 데이터셋에 5만 개를 더 추가했다. 데이터 수는 초록에도 나와 있다. 또한 이미지 캡셔닝이랑 무엇이 다른지에 대한 설명도 나와 있다.


관련 연구(Related Works)

  • VQA Efforts: Visual Question Answering은 이전에도 다뤄진 적이 있긴 한데, 여기서 제안하는 것보다 훨씬 제한된 환경과 제한된 데이터셋 안에서 다룬다. 물체의 종류도 적고, 답변의 단어 등도 제한적이다. 이 VQA task는 그렇지 않다. free-form, open-ended이다.
  • Text-based Q&A: 이 문제는 NLP와 텍스트 처리 분야에서 잘 연구되었다. VQA 기술에 도움이 될 몇 가지 접근법이 있다. 이 경우 질문은 텍스트를 기반으로 이루어진다. VQA는 text와 vision 모두에 의존한다.
  • Describing Visual Content: 이미지 태깅, 이미지 캡셔닝, 비디오 캡셔닝 등이 VQA와 관련이 있다. 그러나 그 캡션은 vision에 특화된 것이 아닌 지나치게 일반적인(많은 이미지에 대해 동일한 캡션을 써도 말이 됨) 경우가 있다.
  • Other Vision+Language Tasks: 이미지 캡셔닝보다 평가가 쉬운 coreference resolution, generating referring expressions 등의 task가 있다.

VQA 데이터셋(VQA Dataset Collection)

사실 이미지 한장이면 충분할 듯 하다.

잘 안 보이니까 일부만 확대하겠다.

  • 약 20만 장의 현실 이미지와 약 5만 장의 추상적인 이미지가 있다.
  • Training / Validation / Test 셋이 나누어져 있다. 그 나누는 비율도 정해져 있다(추상 이미지의 경우 20K/10K/20K). subsplit은 없다.
  • 이미 MS COCO 데이터셋은 이미지당 5개의 한 문장짜리 캡션이 있으므로, 추상 이미지에도 그만큼 붙여서 만들었다.
  • 흥미롭고, 다양하고, 잘 만들어진 질문을 모으는 것은 매우 중요한 문제이다.
    • “저 고양이의 색깔은 무엇인가?”, “지금 몇 개의 의자가 이미지에 있는가?” 같은 질문은 너무 단순하다.
    • 그러나 우리는 “상식”을 필요로 하는 질문을 원한다. 또, 상식”만”으로 대답할 수 있는 질문은 안 된다.
      • 예를 들면 “사진의 저 동물은 어떤 소리를 낼 것 같은가?” 같은 질문이다.
      • “콧수염은 무엇으로 만들어지는가?” 같은 질문은 의미 없다.
    • 그래서 총 76만 개 정도의 질문을 확보하였다.
  • 많은 질문들에 대해서는 yes/no만 해도 충분하다. 그러나 그렇지 않은 것들도 있다.
  • 열린 형태(open-ended) 질문들은 다음 metric에 의해 평가된다.
    • $ \text{accuracy} = min({\text{그 답변을 한 사람의 수} \over 3}, 1) $
  • 다지선다형(객관식) 문제는 18개의 선택지가 있다.
    • 이외에도 다양한 형태의 문제가 존재한다.

VQA 데이터셋 분석(VQA Dataset Analysis)

데이터의 정확한 수, 질문의 종류 및 수, 답변의 종류 및 수, 질답의 길이 등에 대한 분포 등이 수록되어 있다.

  • 질문에는 “What is…”, “Is there…”, “How many…”, “Does the…” 같은 질문들이 있다. 질문의 길이는 4~8단어가 대부분이다.
  • 답변에는 yes/no, 색깔, left/right 등의 답변이 많다. 1 / 2 / 3단어인 경우가 대략 90%, 6%, 2.5% 정도씩 있다.
  • 상식을 필요로 하는 질문은 위에서 설명한 대로 당연이 이미지에서도 정보를 얻어야 답변이 가능하다.

task를 제안하는 것인만큼 데이터에 대한 정보가 매우 자세하다. 아래 그림 같은 정보도 있다. 여러 종류의 질문에 대해 답변이 어떤 단어가 어떤 비율로 있는지 등을 나타낸다.


VQA 기준선과 방법(VQA Baselines and Methods)

Baselines

  • random: 무작위로 답변을 선택한다.
  • prior(“yes”): “yes” 답변이 가장 많기 때문에 항상 yes를 답으로 내놓는다.
  • per Q-type prior: 각 질문 종류별로 답변 중 최빈값을 답으로 내놓는다.
  • nearest neighbor: 가장 유사한 K개의 질문을 뽑아 그 답변들 중 최빈값을 답으로 내놓는다.

Methods

  • Image Channel: 이미지를 위한 embedding을 제공한다.
    • I: VGGNet의 마지막 hidden 레이어가 4096차원의 embedding으로 사용된다.
    • norm I: 위와 비슷하나 $l_2$ 정규화된 활성함수를 사용
  • Question Channel: 질문을 위한 embedding을 제공한다.
    • Bag-of-Words Question(BoW Q): 질문의 최빈 1000개의 단어와 30차원의 BoW를 사용하여 1030차원의 질문 embedding을 만든다.
    • LSTM Q: 1024차원이다.
    • deeper LSTM Q: 2048차원이다.
  • Multi-Layer Perceptron(MLP):
    • BoW Q + I에 대해서는 단지 concatenate한다.
    • LSTM Q + I, deeper LSTM Q + norm I에 대해서는 이미지 embedding은 차원을 맞추기 위해 1024차원으로 변환된 후 LSTM embedding과 element-wise하게 곱해진다.

Results

방법에 따라서는 28.13%/30.53%(각각 open-ended와 multiple-choice)를 나타낸 것부터 58.16%/63.09%를 나타낸 모델(deeper LSTM Q + norm I)까지 결과는 다양하다.
따라서 적어도 60%는 넘어야 의미 있는 VQA 시스템이라고 할 수 있을 것이다.


VQA Challenge and Workshop

CVPR 2016에서부터 1년 간격으로 열린다. 테스트 서버도 준비되어 있다.


결론 및 토의(Conclusion and Discussion)

이 논문에서는 VQA task를 제안하였고, 그에 맞는 데이터를 제공하였다.
우리는 VQA가 자동평가가 가능한 “AI-complete” 문제를 풀기 위한 한계를 끌어올리기에 적합하다고 생각한다. 이를 위한 노력에 드는 시간도 가치가 있다고 여겨진다.


참고문헌(References)

논문 참조!


결론 이후에도 많은 정보가 있으니 참조하면 좋다. 매우 흥미로운 것들이 많다.
대부분은 데이터의 분포에 관한 설명 및 시각화한 그림들이다.


Comment  Read more

DANs(Dual Attention Networks for Multimodal Reasoning and Matching, DANs 논문 설명)

|

이 글에서는 네이버랩스(Naver Corp.)에서 2017년 발표한 논문인 Dual Attention Networks for Multimodal Reasoning and Matching에 대해 알아보고자 한다.
네이버랩스는 인공지능 국제대회 ‘CVPR 2016: VQA Challenge’에서 2위를 차지하였고, 해당 챌린지에서 DAN(Dual Attention Networks)라는 알고리즘을 개발하였다. 이어 이 알고리즘을 조금 더 일반화하여 2017년 발표한 논문이 이 논문이다.

VQA가 무엇인지는 여기를 참조하면 된다.

간단히, DANs은 따로 존재하던 Visual 모델과 Textual 모델을 잘 합쳐 하나의 framework로 만든 모델이라고 할 수 있겠다.

중요한 부분만 적을 예정이므로 전체가 궁금하면 원 논문을 찾아 읽어보면 된다.


DANs(Dual Attention Networks for Multimodal Reasoning and Matching)

논문 링크: DANs(Dual Attention Networks for Multimodal Reasoning and Matching)

초록(Abstract)

vision과 language 사이의 세밀한 상호작용을 포착하기 위해 우리는 visual 및 textual attention을 잘 조정한 Dual Attention Networks(DANs)를 제안하고자 한다. DANs는 이미지와 텍스트 모두로부터 각각의 중요한 부분에 여러 단계에 걸쳐 집중(attend / attention)하고 중요한 정보를 모아 이미지/텍스트의 특정 부분에만 집중하고자 한다. 이 framework에 기반해서, 우리는 multimodal reasoning(추론)과 matching(매칭)을 위한 두 종류의 DANs를 소개한다. 각각의 모델은 VQA(Visual Question Answering), 이미지-텍스트 매칭에 특화된 것이고 state-of-the-art 성능을 얻을 수 있었다.


서론(Introduction)

Vision과 language는 실제 세계를 이해하기 위한 인간 지능의 중요한 두 부분이다. 이는 AI에도 마찬가지이며, 최근 딥러닝의 발전으로 인해 이 두 분야의 경계조차 허물어지고 있다. VQA, Image Captioning, image-text matching, visual grounding 등등.

최근 기술 발전 중 하나는 attention mechanism인데, 이는 이미지 등 전체 데이터 중에서 중요한 부분에만 ‘집중’한다는 것을 구현한 것으로 많은 신경망의 성능을 향상시키는 데 기여했다.
시각 데이터와 텍스트 데이터 각각에서는 attention이 많은 발전을 가져다 주었지만, 이 두 모델을 결합시키는 것은 연구가 별로 진행되지 못했다.

VQA같은 경우 “(이미지 속) 저 우산의 색깔은 무엇인가?” 와 같은 질문에 대한 답은 ‘우산’과 ‘색깔’에 집중함으로써 얻을 수 있고, 이미지와 텍스트를 매칭하는 task에서는 이미지 속 ‘girl’과 ‘pool’에 집중함으로써 해답을 얻을 수 있다.

이 논문에서 우리는 vision과 language의 fine-grained 상호작용을 위한 visual 모델과 textual 모델 두 가지를 잘 결합한 Dual Attention Networks(DANs)를 소개한다. DANs의 두 가지 변형 버전이 있는데, reasoning-DAN(r-DAN, 추론용 모델)과 matching-DAN(m-DAN, 매칭용 모델)이다.

r-DAN은 이전 attention 결과와 다음 attention을 모은 결합 메모리를 사용하여 시각적 그리고 언어적 attention을 협동 수행한다. 이는 VQA같은 multimodal 추론에 적합하다.
m-DAN은 시각 집중 모델과 언어 집중 모델을 분리하여 각각 다른 메모리에 넣지만 이미지와 문장 사이의 의미를 찾기 위해 학습은 동시에 진행하는 모델이다. 이 접근법은 최종적으로 효율적인 cross-modal 매칭을 용이하게 해 준다.
두 알고리즘 모두 시각적 그리고 언어적(문자적, textual) 집중 mechanism을 하나의 framework 안에 긴밀히 연결한 것이다.

이제 우리가 기여한 바는 다음과 같다:

  • 시각적 그리고 언어적 attention을 위한 통합된 framework를 제안하였다. 이미지 내 중요한 부분과 단어들은 여러 단계에서 합쳐진 곳에 위치한다.
  • 이 framework의 변형 버전 두 가지는 실제로 추론 및 매칭을 위한 모델로 구현되어 VQA와 image-text 매칭에 적용되었다.
  • attention 결과의 상세한 시각화는 우리의 모델이 task에 핵심적인 이미지 및 문장 부분에 잘 집중하고 있음을 보여주는 것을 가능하게 한다.
  • 이 framework는 VQA와 Flickr30K 데이터셋에서 SOTA(state-of-the-art) 결과를 보여주었다.

관련 연구(Related Works)

  • Attention Mechanisms: 간단히 말해 시각적 또는 언어적 입력에서 task를 해결하는 데 중요한 일부분에만 집중하도록 해 문제를 잘 풀 수 있게 하는 방법이다.
  • Visual Question Answering(VQA): 이미지와 그 이미지와 연관된 질문이 주어지면 적절한 답을 찾는 task이다. 자세한 내용은 여기를 참조하라.
  • Image-Text Matching: 시각자료(이미지)와 글자자료(=문장, 언어적 부분) 사이의 의미적 유사도를 찾는 것이 가장 중요하다. 많은 경우 이미지 특징벡터(feature vector)와 문장 특징벡터를 직접 비교할 수 있도록 변형해 비교하는 방법이 자주 쓰인다. 이 비교방법은 양방향 손실함수 또는 CNN으로 결합하는 방법 등이 쓰인다. 그러나 multimodal attention 모델을 개발하려는 시도는 없었다.

Dual Attention Networks(DANs)

Input Representation

Image representation

  • 이미지 특징은 19-layer VGGNet 또는 152-layer ResNet으로 추출했다.
  • 448 $\times$ 448 으로 바꿔 CNN에 집어넣는다.
  • 다른 ‘지역’(region)으로부터 특징벡터를 얻기 위해 VGGNet 및 ResNet의 마지막 pooling layer를 취했다.
  • 이제 이미지는 ${v_1, …, v_N}$으로 표현된다. $N$은 이미지 지역의 개수, $v_n$은 512(VGGNet) 또는 2048(ResNet)이다.

Text representation

one-hot 인코딩으로 주어진 $T$개의 입력 단어들 ${w_1, …, w_T}$을 임베딩시킨 후 양방향 LSTM에 집어넣는다.

임베딩 행렬(embedding matrix)와 LSTM은 end-to-end로 학습된다.

Attention Mechanisms

bias $b$는 생략되어 있다.

Visual Attention

이미지의 특정 부분에 집중하게 하는 context vector를 생성하는 것을 주목적으로 한다.

step $k$에서, 시각문맥벡터(visual context vector) $v^{(k)}$는

[v^{(k)} = \text{V_Att} ({v_n}^N_{n=1}, \ m_v^{(k-1)}]

$m_v^{(k-1)}$는 step $k-1$까지 집중했었던 정보를 인코딩하는 메모리 벡터이다.
여기에다가 soft attention mechanism을 적용하게 된다.

attention weights $\alpha$는 2-layer FNN과 softmax로 구해진다. $W$들은 네트워크 parameter이다.

Textual Attention

마찬가지로 문장의 특정 부분에 집중할 수 있도록 문맥벡터 $u^{(k)}$를 매 step마다 생성하는 것이다.

[u^{(k)} = \text{T_Att} ({u_t}^T_{t=1}, \ m_u^{(k-1)}]

r-DAN for Visual Question Answering

VQA는 multimodal 데이터를 결합 추론하는 것을 필요로 하는 문제이다. 이를 위해 r-DAN은 step $k$에서 시각 및 언어적 정보를 축적하는 메모리 벡터 $m^{(k)}$를 유지한다. 이는 재귀적으로 다음 식을 통해 업데이트된다.

[m^{(k)} = m^{(k-1)} + v^{(k)} \ (\cdot) \ u^{(k)}]

최종 답은 다음과 같이 계산된다. $ \text{p}_{\text{ans}}$는 정답 후보들의 확률을 나타낸다.

[\bold{\text{p}}{\text{ans}} = \text{softmax} \bigr( W{\text{ans}} \ m^{(K)} \bigl)]

m-DAN for Image-Text Matching

수식의 형태는 꽤 비슷하다.

[m_v^{(k)} = m_v^{(k-1)} + v^{(k)}]

[m_u^{(k)} = m_u^{(k-1)} + u^{(k)}]

\(s^{(k)} = v^{(k)} \cdot u^{(k)}, \ S = \sum_{k=0}^K s^{(k)}\) Loss function은 다음과 같이 정의된다.

추론할 시점에는 어떤 이미지나 문장이든 결합공간 안에 임베딩된다.

[z_v = [v^{(0)}; … ; v^{(K)}],]

[z_u = [u^{(0)}; … ; u^{(K)}],]


실험(Experiments)

Experimental Setup

r-DAN과 m-DAN 모두에 대해 모든 hyper-parameters들은 전부 고정되었다.

$K$=2, LSTM을 포함한 모든 네트워크의 hidden layer의 dimension=512,
lr=0.1, momentum=0.9, weight decay=0.0005, dropout rate=0.5, gradient clipping=0.1,
epochs=60, 30epoch 이후 lr=0.01,
minibatch=128 $\times$ 128 quadruplets(긍정 이미지, 긍정 문장, 부정 이미지, 부정 문장),
가능한 답변의 수 C=2000, margin $m$=100이다.

Evaluation on Visual Question Answering

Dataset and Evaluation Metric

VQA 데이터셋을 사용하였고, train(이미지 8만 장), val(이미지 4만 장), test-dev(이미지 2만 장), test-std(이미지 2만 장)이다. 측정방법은

$\hat{a}$는 예측된 답이다.

Results and Analysis

결과를 보면 대부분의 상황에서 SOTA 결과를 얻었으며, 이미지와 문장에서 집중해야 할 부분을 잘 찾았음을 확인할 수 있다.

Evaluation on Image-Text Matching

분석결과는 비슷하므로 생략한다.


결론(Conclusion)

우리는 시각 및 언어적 attention mechanism을 연결하기 위한 Dual Attention Networks (DANs)를 제안하였다. 추론과 매칭을 위한 모델을 하나씩 만들었고, 각각의 모델은 이미지와 문장으로부터 공통 의미를 찾아낸다.
이 모델들은 VQA와 image-text 매칭 task에서 SOTA 결과를 얻어냄으로써 DANs의 효과를 입증하였다. 제안된 이 framework는 image captioning, visual grounding, video question answering 등등 많은 시각 및 언어 task들로 확장될 수 있다.


참고문헌(References)

논문 참조! 부록은 없다. 읽기 편하다


Comment  Read more

Pix2Pix(Image-to-Image Translation with Conditional Adversarial Networks, Pix2Pix 논문 설명)

|

이 글에서는 2016년 11월 Phillip Isola 등이 발표한 Image-to-Image Translation with Conditional Adversarial Networks(Pix2Pix)를 살펴보도록 한다.

Pix2Pix는 Berkeley AI Research(BAIR) Lab 소속 Phillip Isola 등이 2016 최초 발표(2018년까지 업데이트됨)한 논문이다.

Pix2Pix는 Image to Image Translation을 다루는 논문이다. 이러한 변환은 Colorization(black & white $\rightarrow$ color image) 등을 포함하는데, Pix2Pix에서는 이미지 변환 문제를 colorization처럼 한 분야에만 국한되지 않고 좀 더 일반화한 문제를 풀고자 했다. 그리고 그 수단으로써 Conditional adversarial nets를 사용했다.

중요한 부분만 적을 예정이므로 전체가 궁금하면 원 논문을 찾아 읽어보면 된다.


Pix2Pix(Image-to-Image Translation with Conditional Adversarial Networks)

논문 링크: Pix2Pix(Image-to-Image Translation with Conditional Adversarial Networks)

초록(Abstract)

우리는 conditional adversarial networks를 일반화된 이미지 변환 문제에 테스트하였다. 이 네트워크는 단지 input-output mapping만 배우는 것이 아니라 이를 학습하기 위한 loss function까지 배운다. 따라서 전통적으로 매우 다른 loss function을 쓰던 문제에들도 이 접근법을 적용할 수 있다.
우리는 이 접근이 label과 동기화, 경계선만 있는 이미지를 복원, 흑백이미지에 색깔 입히기 등등의 문제에 효과적임을 보였다.


서론(Introduction)

이미지를 이미지로 변환할 뿐인 수많은 문제들은 그 세팅이 똑같음에도 각각 따로 연구되어 왔다(위에서 말한 이미지 변환 문제들). 우리는 이러한 변환 문제를 위한 일반적인 framework를 개발하는 것이 목표이다.

이쪽 방향으로는 이미 CNN이라는 좋은 기계가 있다. CNN은 결과의 품질을 알려주는 loss function을 최소화한다. 그러나 학습 과정 자체는 자동화되어 있지만 결과를 잘 나오게 하기 위해서는 여전히 수동으로 조절해야 할 것이 많다. 즉, 우리는 무엇을 최소화해야하는지 CNN에게 말해주어야 한다.
만약 우리가 단순히 결과와 정답 사이의 유클리드 거리를 최소화하라고만 하면 뿌연(blurry) 이미지를 생성하게 된다. 이는 유클리드 거리는 그럴듯한 결과를 평균했을 때 최소화되기 때문이고, 결과적으로 이미지가 흐려진다. 실제 같은(realistic) 이미지를 얻기 위해서는 더 전문 지식이 필요하다.

만약 우리가 원하는 것을 고수준으로(high-level goal) 말할 수만 있다면, 네트워크는 스스로 그러한 목표에 맞게 loss를 줄여나갈 것이다. 운 좋게도, 최근에 정확히 이것을 해주는 GAN이 발표되었다. GAN은 실제와 가짜를 구분하지 못하도록 학습을 진행하며, 이는 흐린 이미지를 생성하지 않게 할 수 있다(뿌연 이미지는 실제 사진처럼 보일 리 없으므로).

이 논문에서, 우리는 CGAN이라는 조건부 생성모델을 사용한다. 우리는 input image라는 조건을 줄 것이고 그에 맞는 output image를 생성할 것이기 때문에 이는 이미지 변환 문제에 잘 맞는다.

이 논문이 기여하는 바는

  • conditional GAN이 넓은 범위의 문제에서 충분히 합리적인 결과를 가져다준다는 것을 밝혔고
  • 좋은 결과를 얻기에 충분한 간단한 framework를 제안하고 여러 중요한 architecture의 효과를 분석하였다.

관련 연구(Related Works)

  • Structures losses for image modeling: 이미지 변환 문제는 per-pixel 분류 또는 회귀 문제로 다뤄졌다. 이러한 공식화는 output space는 “unstructured”이며 각 결과 픽셀은 다른 픽셀에 독립적인 것처럼 다룬다. CGAN는 “structured loss”를 학습하며 많은 논문들이 이러한 loss를 다룬다. conditional random fields, SSIM metric, nonparametric losses 등등.
  • Conditional GANs: 사실 이 논문에서 GAN을 처음 사용한 것은 아니다. 그러나 조건부 GAN을 이미지 변환 문제에 사용한 적은 없었다. CGAN에 대한 설명은 여기를 참조하자.

방법(Method)

GAN은 random noise vector $z$로부터 output image $y$를 생성하는 $G: z \rightarrow y$를 학습하는 생성모델이다. 이에 비해 CGAN은 $z$와 observed image $x$로부터 $y$로의 mapping인 $G: {x, z} \rightarrow y$를 학습한다.

[\]

목적함수(Objective)

CGAN의 목적함수는 다음과 같다.

[\mathcal{L}{\text{cGAN}}(G, D) = \mathbb{E}{x , \ y}[log \ D(x,y)] + \mathbb{E}_{x , \ z}[log \ (1-D(G(x, z)))]]

D를 조건부로 학습시키는 것을 중요하게 여겨, D가 $x$를 관측하지 못하도록 unconditional variant를 비교하도록 했다:

[\mathcal{L}{\text{GAN}}(G, D) = \mathbb{E}{ y}[log \ D(y)] + \mathbb{E}_{x , \ z}[log \ (1-D(G(x, z)))]]

D의 할일은 그대로이지만, G는 단지 D를 속이는 것뿐만 아니라 L2 distance에서의 ground truth에도 가깝도록 만들어야 한다.
사실 L2보다는 L1을 사용하는 것이 덜 흐린 이미지를 생성하는 데 도움이 되었다:

[\mathcal{L}{L1}(G) = \mathbb{E}{x, \ y, \ z }[ \Vert y - G(x, z) \Vert_1 ]]

그래서 최종 목적함수는

[G^\ast = arg \ min_G \ max_D \ \mathcal{L}{\text{cGAN}}(G, D) + \lambda \mathcal{L}{L1}(G)]

이다.

$z$가 없이도 네트워크는 $x \rightarrow y$ mapping을 학습할 수 있지만, 결정론적인 결과를 생성할 수 있고, 따라서 delta function 이외의 어떤 분포와도 맞지 않을 수 있다. 과거의 conditional GAN은 이를 인정하여 $x$에 더해 Gaussian noise $z$를 입력으로 주었다.
초기 실험에서 우리는 noise를 단순히 무시하도록 했지만, 최종 모델에서는 dropout 시에만 noise를 제공하여 학습과 테스트 시 모두에 G의 여러 레이어에 적용되도록 만들었다. dropout noise에도 불구하고 우리는 매우 조금의 stochasiticity만을 관측하였다. 아주 stochastic한 결과를 생성하는 conditional GAN을 설계하는 것은 아주 중요한 문제이다.

네트워크 구조(Network architectures)

우리는 DCGAN을 G와 D의 기본 모델로 하였고 둘 다 convolution-BatchNorm-ReLU 구조를 따른다.

Generator with skips

이미지 변환(image-to-image translation) 문제에서 어려운 점은 고해상도 input grid를 고해상도 output grid로 mapping하는 것이다. 심지어 표면의 외관은 다른데 각각 같은 근본적인 구조를 가진다는 것이다.
많은 이전 연구들은 encoder-decoder 네트워크를 사용한다. 이러한 네트워크에서는 bottleneck 레이어를 통과하기 때문에 정보의 손실이 필연적으로 발생할 수밖에 없다. 그래서, skip-connection을 추가한 U-Net이라는 구조를 사용했다.
정확히는, 전체 레이어 개수를 $n$이라 할 때 모든 $i$번째 레이어와 $n-i$번째 레이어를 연결했다. 각 연결은 단순히 concatenate한 것이다.

Markovian discriminator(PatchGAN)

high-frequency 모델링을 위해, 집중할 부분(attention)을 local image patch 단위로만 제한하는 것으로 충분하다. 그래서, 우리는 D를 PatchGAN(일반 GAN인데 단지 Patch 단위로만 보는 것) 구조로 만들었다.
그래서 우리의 D는 $N \times N$개의 각 Patch별로 이 부분이 진짜인지 가짜인지를 판별한다.

실험 단계에서 우리는 $N$이 작아도 전체 이미지를 한번에 보는 것보다는 더 좋은 결과를 얻을 수 있음을 보였다. 이는 더 작은 PatchGAN은 더 적은 parameter를 가지고, 더 빠르며, 더 큰 이미지에 적용하는 데에서도 이점이 있음을 보여준다.

D가 이미지를 Markov random field처럼 보는 것이 효과적인 모델링 방법이므로, patch의 지름보다 더 먼 pixel들은 독립적이라고 보았다. 이러한 접근은 이미 연구된 바 있고, texture/style 모델에서 꽤 흔하며 적절한 가정이다. 따라서 PatchGAN은 texture/style loss면에서 충분히 이해가능한 모델이다.

최적화 및 추론(Optimization and inference)

일반적인 GAN 접근법을 따랐다. original GAN에서는 $log \ (1-D(x, G(x,z)))$를 최소화하는 대신 $log \ D(x, G(x,z))$를 최대화하는 것이 낫다고 했다.
그러나 우리는 D를 최적화하는 목적함수를 2로 나누어 D가 G보다 상대적으로 더 빠르게 학습되지 않도록 하였다.
또한 minibatch SGD와 Adam을 사용하였다($lr=0.0002, \beta_1 = 0.5, \beta_2 = 0.999$). 또한 batch size는 실험에 따라 1~10으로 조정하였다.


실험(Experiments)

conditional GAN의 보편성을 테스트하기 위해, 다양하게 진행하였다.

Problem Dataset
Semantic labels $\leftrightarrow$ photo Cityspaces dataset
Architectural labels $\leftrightarrow$ photo CMP Facades
Map $\leftrightarrow$ aerial photo Google Maps
BW $\rightarrow$ color photos ImageNet
Edges $\rightarrow$ photo Natural Image manifold
Sketch $\rightarrow$ photo human sketches
Day $\rightarrow$ night ACM Transactions on Graphics
Thermal $\rightarrow$ color photos Benchmark dataset and baseline
Photo with missing pixels $\rightarrow$ inpainted photo Paris StreetView

다른 네트워크보다 더 좋은 결과:

encoder-decoder보다 더 효과적인 U-Net:

Patch의 개수를 늘렸을 때의 선명도 상승:

구글맵 사진과 도식화한 그림 간 변환 결과:

Colorization과 이미지 도식화:

등등 많은 결과가 논문에 나타나 있다.

사실 colorization 문제와 같은 것에서는 colorization에 특화된 네트워크가 더 좋은 결과를 내기는 한다.
그러나 이 Pix2Pix는 훨씬 더 넓은 범위의 문제를 커버할 수 있다는 점에서 의의가 있다.

더 많은 결과에 대해서는 여기를 참조하라.


결론(Conclusion)

이 논문에서는 image-to-image translation 문제에 대해, 특히 고도로 구조화된 그래픽 결과에 대해 conditional adversarial networks가 괜찮은 접근법이라는 것을 보여주었다. 이 네트워크는 문제와 데이터에 대한 loss를 학습함으로써 넓은 범위의 문제에 대해 적합함을 보여주었다.

Acknowledgments

매우 많다 ㅎㅎ


참고문헌(References)

논문 참조!


결론 이후에도 많은 실험 결과가 있으니 참조하시라. 매우 흥미로운 것들이 많다.


부록

Generator architectures

코드는 여기에 있다.

encoder는 C64-C128-C256-C512-C512-C512-C512-C512 구조이다(convolution layer).
decoder는 CD512-CD512-CD512-C512-C256-C128-C64 구조이다.

decoder의 마지막 레이어 이후 output 채널에 맞게 mapping되고(3, colorization에서는 2), Tanh 함수가 그 뒤를 따른다.
또한 encoder의 C64에서는 BatchNorm이 없다.
encoder의 모든 ReLU는 기울기 0.2의 Leaky ReLU이며, decoder는 그냥 ReLU이다.

U-Net decoder는 다음과 같이 생겼다. 앞서 언급했든 $i$와 $n-i$번째 레이어 사이에 skip-connection이 존재한다. 이는 decoder의 채널의 수를 변화시킨다.

CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128

Discriminator architectures

$ 70 \times 70 $ discriminator의 구조는:

C64-C128-C256-C512

단 C64에는 BatchNorm이 적용되지 않는다.
마지막 레이어 이후 convolution을 통해 1차원으로 mapping하며 마지막에 sigmoid 함수가 적용된다.
0.2짜리 Leaky ReLU가 적용되었다.

다른 크기의(patch) D들은 조금씩 깊이가 다르다.

$ 1 \times 1 $ discriminator: C64-C128(convolution들은 $ 1 \times 1 $ spatial 필터를 사용)

$ 16 \times 16 $ discriminator: C64-C128

$ 286 \times 286 $ discriminator: C64-C128-C256-C512-C512-C512

학습 상세

  • $ 256 \times 256 $ 이미지는 $ 286 \times 286 $ 크기로 resize되었다가 random cropping을 통해 다시 $ 256 \times 256 $가 되었다.
  • 모든 네트워크는 scratch로부터 학습되었다.
  • weights는 (0, 0.02) 가우시안 분포를 따르는 랜덤 초기값을 가진다.
  • 데이터셋마다 조금씩 다른 기타 설정은 논문을 참조하자.

Comment  Read more

GAN의 개선 모델들(catGAN, Semi-supervised GAN, LSGAN, WGAN, WGAN_GP, DRAGAN, EBGAN, BEGAN, ACGAN, infoGAN), GAN의 개선 모델 설명

|

이 글에서는 catGAN, Semi-supervised GAN, LSGAN, WGAN, WGAN_GP, DRAGAN, EBGAN, BEGAN, ACGAN, infoGAN 등에 대해 알아보도록 하겠다.

아래쪽의 ACGAN, infoGAN은 발표 시기가 아주 최신은 아니지만 conditional GAN(CGAN)의 연장선상에 있다고 할 수 있기 때문에 따로 빼 놓았다.

각각에 대해 간단히 설명하면,

  • catGAN(Categorical GAN): D가 real/fake만 판별하는 대신 class label/fake class을 출력하도록 바꿔서 unsupervised 또는 semi-supervised learning이 가능하도록 하였고 또한 더 높은 품질의 sample을 생성할 수 있게 되었다.
  • Semi-supervised GAN: catGAN과 거의 비슷하다. original GAN과는 달리 DCGAN을 기반으로 만들어졌다.
  • LSGAN: 진짜 분포 $ p_{data} $와 가짜 데이터 분포 $p_g$를 비슷하게 만들기 위해, decision boundary에서 멀리 떨어진 sample에게 penalty를 주어 진짜 데이터에 근접하게 만드는 아이디어를 사용했다. 이름답게 loss function에는 Least Square가 사용되었고, 이를 통해 더 선명한 출력 이미지와 학습 과정의 높은 안정성을 얻었다. 또한, 이 최적화 과정이 $\chi^2$ divergence 최소화와 같음을 보였다.
  • WGAN: 실제 데이터의 분포와 가짜 데이터의 분포의 거리를 측정하는 방법으로 Wasserstein Distance를 정의하여 가짜 데이터를 실제 데이터에 근접하도록 하는 방법을 제시하였는데, 기존의 GAN들이 최적 값으로 잘 수렴하지 않던 문제를 해결, 거의 대부분의 데이터셋에서 학습이 잘 되는 GAN을 만들어냈다.
  • WGAN_GP: Improved WGAN이다. WGAN이 k-Lipschitz constraints를 만족시키기 위해 단순히 clipping을 수행하는데, 이것이 학습을 방해하는 요인으로 작용할 수 있다. WGAN_GP에서는 gradient penalty라는 것을 목적함수에 추가하여 이를 해결하였고, 학습 안정성을 데이터셋뿐만 아니라 모델 architecture에 대해서도 얻어냈다.
  • DRAGAN: Deep Regret Analytic GAN이다. WGAN에 더불어 gradient penalty를 정규화하고 더 다듬어 gradient penalty schemes(또는 heuristics)를 만들었고, 이를 저자들은 DRAGAN algorithm이라 하였다. 결과적으로 여전히 남아 있던 mode collapse 문제를 더 완화하였다.
  • EBGAN: Energy-Based GAN. 지금까지 대부분의 GAN이 D가 real일 확률을 0/1로 나타냈었다면, 이 모델은 그 구조를 깨고 에너지 기반 모델로 바꿨다는 데 의의가 있다. 그래서 D는 단지 real/fake를 구분하는 것이 아닌 G에 대한 일종의 loss function처럼 동작하며, 실제 구현은 Auto-Encoder으로 이루어졌다.
  • BEGAN: Boundary Equilibrium GAN으로, EBGAN을 베이스로 하고 Watterstein distance를 사용하였으며, 모델 구조를 단순화하고 이미지 다양성과 품질 간 trade-off를 조절할 수 있는 방법 또한 알아냈다고 한다. 이 논문에서는 스스로 milestone한 품질을 얻었다고 한다.
  • ACGAN: D를 2개의 분류기로 구성하고 목적함수도 두 개로 나눠서 real/fake, 데이터의 class를 구하는 과정을 분리하여 disentangled한 $z$를 만들었다.
  • infoGAN: 많은 GAN들이 그 내부의 parameter가 심하게 꼬여(entangled) 있고 이는 parameter의 어떤 부분이 어느 역할을 하는지 전혀 알 수 없게 만든다. infoGAN에서는 이를 잘 분리하여, semantic feature를 잘 조작하면 어떤 인자를 조작했느냐에 따라 생성되는 이미지의 각도, 밝기, 너비 등을 임의로 조작할 수 있게 하였다.

이 글에 소개된 대부분의 GAN은 다음 repository에 구현되어 있다.

Pytorch version
Tensorflow version


catGAN

논문 링크: catGAN

2015년 11월 처음 제안되었다.

데이터의 전체 또는 일부가 unlabeled인 경우 clustering은 $p_x$를 직접 예측하는 generative model과 분포를 예측하는 대신 데이터를 직접 잘 구분된 카테고리로 묶는 discriminative model로 나누어지는데, 이 모델에서는 이 두 아이디어를 합치고자 했다.
논문에서 이 catGAN은 original GAN이 $real, fake$만 구분하던 것을 real인 경우에는 그 class가 무엇인지까지 구분하게($C_1, C_2, …, C_N, C_{fake}$)했다는 점에서 original GAN의 일반화 버전이라고 하였으며, 또한 RIM(Regularized Information Maximization)에서 regularization이 추가가 되었듯 catGAN에선 G가 D에 대한 regularization을 하기 때문에 RIM의 확장판이라고도 하였다.

RIM에서 최적의 unsupervised classifier의 목적함수로 엔트로피를 사용하였듯 catGAN도 목적함수로 엔트로피 개념을 사용한다. 아래는 논문에 나온 그림이다.

왼쪽에서 초록색은 G(generate라고 되어 있다), 보라색은 D를 의미한다. 여기서 H는 엔트로피이다.

오른쪽 그림을 보면, D의 입장에서는:

  • i) real data는 실제 class label을 딱 하나 갖고 있기 때문에 해당하는 label일 확률만 1에 가깝고 나머지는 0이어야 한다. 따라서 엔트로피( $ H[p(y \vert x, D)] $ )를 최소화한다.
  • ii) fake data의 경우 특정 class에 속하지 않기 때문에 class label별로 확률은 비슷해야 한다. 따라서 엔트로피$H[p(y \vert x, G(z))]$를 최대화한다.
  • iii) 학습 sample이 특정 class에 속할 확률이 비슷해야 한다는 가정을 했기 때문에, input data $x$에 대한 marginal distribution(주변확률분포)의 엔트로피($H[p(y \vert D)]$)가 최대가 되어야 한다.

G의 입장에서는:

  • D를 속여야 하기 때문에 G가 만든 가짜 데이터는 가짜임에도 특정 class에 속한 것처럼 해야 한다. 즉, D의 i) 경우처럼 엔트로피($H[p(y \vert x, G(z))]$)를 최소화한다.
  • 생성된 sample은 특정 class에 속할 확률이 비슷해야 하기 때문에 marginal distribution의 엔트로피($H[p(y \vert D)]$)가 최대화되어야 한다.

따라서 D와 G의 목적함수를 정리하면,

[L_D = max_D ~~~ H_{\chi}[p(y D)] - \mathbb{E}_{x\sim \chi} [H[p(y x, D)]] + \mathbb{E}_{z\sim P(z)}[H[p(y G(z), D)]]]
[L_G = min_G ~~~ H_G[p(y D)] + \mathbb{E}_{z\sim P(z)}[H[p(y G(z), D)]]]

다만 $L_D$의 마지막 항을 직접 구하는 것은 어렵기 때문에, $z \sim P(z) $를 $M$개 뽑아 평균을 계산하는 몬테카를로 방법을 쓴다.

위 목적함수를 사용하여 실험한 결과는 다음과 같다.

Unsupervised catGAN은 9.7%의 error를 보이는 데 반해 $n=100$만의 labeled data가 있는 버전의 경우 error가 1.91%까지 떨어진다. $n=1000$, $n=전체$인 경우 error는 점점 떨어지는 것을 볼 수 있다. 즉, 아주 적은 labeled data를 가진 semi-supervised learning이라도 굉장히 쓸모있다는 뜻이다.

또한 k-means나 RIM과 비교했을 때 두 원을 잘 분리해내는 것을 볼 수 있다.

MNIST나 CIFAR-10 데이터도 잘 생성해내는 것을 확인하였다.


Semi-supervised GAN

논문 링크: Semi-supervised GAN

2016년 6월 처음 제안되었다.

위의 catGAN과 거의 비슷한 역할을 한다. 전체적인 구조도 비슷하다.

논문 자체가 짧고 목적함수에 대한 내용이 없어서 자세한 설명은 생략한다. 특징을 몇 개만 적자면,

  • original GAN과는 달리 sigmoid 대신 softmax를 사용하였다. $N+1$개로 분류해야 하니 당연하다.
  • DCGAN을 기반으로 작성하였다.
  • D가 classifier의 역할을 한다. 그래서 논문에서는 D/C network라고 부른다(D이자 C).
  • classifier의 정확도는 sample의 수가 적을 때 CNN보다 더 높다는 것을 보여주었다. sample이 많을 때는 거의 같았다.
  • original GAN보다 생성하는 이미지의 품질이 좋다.

LSGAN

논문 링크: LSGAN

2016년 11월 처음 제안되었다.

original GAN의 sigmoid cross entropy loss function은 vanishing gradients 문제가 있고, 따라서 출력 이미지는 실제 이미지에 비해선 분명히 품질이 떨어진다.

아래 그림의 (b)에서, 오른쪽 아래의 가짜 데이터는 D를 잘 속이고 있지만 vanishing gradient(sigmoid 그래프의 양쪽 끝을 생각하라) 문제로 인해 거의 업데이트되지 않고, 따라서 가짜 이미지는 실제 이미지와는 동떨어진 결과를 갖는다.
그러나 (c)처럼 이렇게 경계로부터 멀리 떨어진 sample들을 거리에 penalty를 줘서 경계 근처로 끌어올 수 있다면 가짜 이미지는 실제에 거의 근접하게 될 것이다. LSGAN은 이 아이디어에서 출발한다.

그래서, D를 위한 loss function을 least squares로 대체하면, 경계(decision boundary)로부터 먼 sample들은 penalty를 받아 경계 근처로 끌려온다.

original GAN의 목적함수는 다음과 같았다.

[min_G max_D V(D, G) = \mathbb{E}{x \sim p{data}(x)}[log D(x)] + \mathbb{E}{x \sim p{z}(z)}[log (1-D(G(z)))]]

LSGAN의 목적함수는 다음과 같다. $a$: fake data label , $b$: real data label.
$c$: G가 원하는 것은 이 $c$라는 값을 D가 fake data라고 믿는 것이다.

[min_D V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}{x \sim p{data}(x)}[(D(x)-b)^2] + \frac{1}{2} \mathbb{E}{x \sim p{z}(z)}[(D(G(z)) - a)^2]]

[min_G V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}{x \sim p{z}(z)}[(D(G(z)) - c)^2]]

이렇게 목적함수를 바꿈으로써 얻는 이득은 두 가지다.

  1. original GAN과는 달리 decision boundary에서 멀리 떨어진 sample을 오랫동안 가만히 두지 않고, 설령 맞는 영역에 위치한다고 해도 이에 penalty를 준다. 이는 결과적으로 G가 이미지를 생성할 때 decision boundary에 최대한 가까운, 즉 실제 이미지에 가깝게 생성하도록 한다.
  2. 멀리 떨어진 sample일수록 square 함수에 의해 penalty를 크게 받는다. 따라서 vanishing gradients 문제가 많이 해소되며, 따라서 학습이 안정적이게 된다. original GAN의 sigmoid는 $\vert x \vert$가 클 때 gradient가 매우 작다.

또 한 가지 더: LSGAN의 목적함수를 최적화하는 과정은 $\chi^2$ divergence를 최소화하는 것과 같다.
간략히 설명하면,

original GAN에서는 최적화 과정이 Jensen-Shannon divergence를 최소화하는 것을 보였다.

[C(G) = KL \biggl( p_{data} \Vert \frac{p_{data}+p_g}{2} \biggr) + KL \biggl( p_{g} \Vert \frac{p_{data}+p_g}{2} \biggr) - log(4)]

이제 LSGAN의 목적함수를 확장해 보면,

[min_D V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}{x \sim p{data}(x)}[(D(x)-b)^2] + \frac{1}{2} \mathbb{E}{x \sim p{z}(z)}[(D(G(z)) - a)^2]]

[min_G V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}{x \sim p{data}(x)}[(D(x)-c)^2] + \frac{1}{2} \mathbb{E}{x \sim p{z}(z)}[(D(G(z)) - c)^2]]

$ V_{\text{LSGAN}}(G) $의 추가된 항은 G의 parameter를 포함하지 않기 때문에 최적값에 영향을 주지 않는다.

우선 G를 고정했을 때 D의 최적값은:

[D^\ast(x) = {bp_{data}(x) + ap_g(x) \over p_{data}(x) + p_g(x)}]

중간 과정을 조금 생략하고 적으면, $b-c=1, b-a=2$라 했을 때

[2C(G) = \mathbb{E}{x \sim p{data}} [(D^\ast(x)-c)^2] + \mathbb{E}{x \sim p{g}} [(D^\ast(x)-c)^2]]

[= \int_\chi {((b-c)(p_d(x) + p_g(x)) - (b-a)p_g(x))^2 \over p_d(x) + p_g(x)} dx]

[= \int_\chi {(2p_g(x) - (p_d(x) + p_g(x)))^2 \over p_d(x) + p_g(x)} dx]

[= \chi^2_{Pearson} (p_d + p_g \Vert 2p_g)]

그러므로 LSGAN의 최적화 과정은 $b-c=1, b-a=2$일 때 $p_d + p_g$와 $2p_g$ 사이의 Pearson $\chi^2$ divergence를 최소화하는 과정과 같다.

학습시킬 때 $a, b, c$ 값을 $a=-1, b=1, c=0$ 또는 $a=0, b=c=1$ 등을 쓸 수 있다. 둘 사이의 차이는 실험 결과 별로 없으므로, 논문에서는 후자를 택했다.

LSGAN의 구조는 두 가지가 제안되어 있다. 하나는 112$ \times $112 size의 이미지를 출력하는 모델, 다른 하나는 class 개수가 3470개인 task를 위한 것(한자를 분류한다)인데, 충분히 읽기 쉬운 글자를 만들어내는 것을 볼 수 있다.

아래에 모델 구조를 나타내었다.

많은 class 수를 가진 경우 생성된 이미지 품질이 좋지 못한데, 이유는 입력 class 종류는 매우 많지만 출력은 하나뿐이기 때문이다. 이를 해결하는 방법은 conditional GAN을 쓰는 것이다.
그러나 one-hot encoding은 너무 비용이 크기 때문에 그 대신 각각의 class에 대응하는 작은 벡터를 linear mapping을 통해 하나 만들어서 모델의 레이어에 붙이는 방식을 썼다. 그 결과가 위 그림과 같으며, 목적함수는 다음과 같이 정의된다:

[min_D V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}{x \sim p{data}(x)}[(D(x \vert \Phi(y))-1)^2] + \frac{1}{2} \mathbb{E}{x \sim p{z}(z)}[(D(G(z) \vert \Phi(y)))^2]]

[min_G V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}{x \sim p{z}(z)}[(D(G(z \vert \Phi(y))) - 1)^2]]

$y$는 label vector, $ \Phi(\cdot) $은 linear mapping 함수이다.

LSUN-bedroom 등 여러 데이터셋에 대한 실험 결과이다.

마지막 그림의 경우 한자 글자를 꽤 잘 생성해내는 것을 볼 수 있다.

LSGAN도 GAN의 역사에서 꽤 중요한 논문 중 하나이다.


WGAN

논문 링크: WGAN

2017년 1월 처음 제안되었다.

소스코드: pytorch

참고할 만한 사이트: 링크

이 논문도 f-GAN처럼 수학으로 넘쳐흐른다. 다만 요약하지 않을 뿐

이 논문의 수학을 이해하는 데 있어 매우 좋은 참고자료가 있다: 링크

이 논문은 실제 데이터 분포와 가짜 데이터 분포 사이의 거리를 측정하는 방법을 바꿈으로써 GAN이 매우 안정적인 학습을 할 수 있도록 만들었다는 것에 의의가 있다.
기억할 것은 하나다: 거의 대부분의 데이터셋에서 학습이 안정적으로 잘 진행된다(다만 경우에 따라 약간 느리다고 한다).

original GAN부터 시작해서 GAN의 기본 아이디어는 두 분포 사이의 거리를 최소화하도록 G(와 D)를 잘 학습시키는 것이다. original GAN의 경우 이 최적화 과정이 Jenson-Shannon divergence(JSD)를 최소화하는 것과 같다는 것은 이미 증명되어있다.

그러나 이 JSD는 모든 분포의 거리를 효과적으로 측정해주지 못한다. 예를 들어

[\mathbb{P}0(x=0, y>0), \quad \mathbb{P}\theta(x=\theta, y>0)]

두 (반직선 형태인) 분포 간의 거리를 JSD로 측정하면,

[JS ( \mathbb{P}{0}, \mathbb{P}\theta ) = 0 \ \ if \ \theta=0, \quad log \ 2 \quad otherwise]

즉, $ \theta $가 1이든 0.0001이든 상관없이 두 분포가 얼마나 가까운지에 대한 정보를 JSD는 전혀 제공해주지 못한다. 이는 KL divergence도 마찬가지이다.

[KL ( \mathbb{P}{0}, \mathbb{P}{\theta}) = 0 \ \ if \ \theta=0, \quad \infty \quad otherwise]

참고로 논문에 나온 다른 측정방식으로 Total Variation(TV)이 있는데 별반 다를 것은 없다.

[\lambda( \mathbb{P}{0}, \mathbb{P}{\theta}) = 0 \ \ if \ \theta=0, \quad 1 \quad otherwise]

참고로 TV는 이렇게 정의된다.

[\delta(\mathbb{P}r, \mathbb{P}_g) = sup{A \in \Sigma} \vert \mathbb{P}_r(A) - \mathbb{P}_g(A) \vert]

그래서 WGAN의 저자들은 이와 비슷한 분포를 가진 경우 등은 GAN이 수렴을 잘 하지 못할 것이라고 하며 분포 간 거리를 측정하는 새로운 Earth-Mover(EM) distance 또는 Wasserstein-1 distance라고 부르는 것을 제안했다.

[W(\mathbb{P}r, \mathbb{P}_g) = \text{inf}{\gamma \in \Pi(\mathbb{P}r, \mathbb{P}_g)} \int d(x, y) \gamma (dxdy) \ \qquad = \text{inf}{\gamma \in \Pi(\mathbb{P}r, \mathbb{P}_g)} \ \mathbb{E}{(x, y) \sim \gamma} [ \Vert x - y \Vert ]]

$\Pi(\mathbb{P}, \mathbb{Q})$는 두 확률분포 $\mathbb{P}, \mathbb{Q}$의 결합확률분포들의 집합이고, $\gamma$는 그 중 하나이다.
즉 위 식은 모든 결합확률분포 $\Pi(\mathbb{P}, \mathbb{Q})$ 중 $d(x,y)$의 기댓값을 가장 작게 추정한 값이다.

이제 이 식을 위 그림의 두 분포에 적용하면 거리는

[W(\mathbb{P}0, \mathbb{P}\theta) = \vert \theta \vert]

로 아주 적절하게 나온다.

그래서 이렇게 나온 Wasserstein distance는 $\mathbb{P}_r$$\mathbb{P}_\theta$ 사이의 거리를 $\mathbb{P}_r$$\mathbb{P}_\theta$로 옮길 때 필요한 양과 거리의 곱으로 측정한다.
이를 어떤 산(분포) 전체를 옮기는 것과 같다고 해서 Earth Mover 또는 EM distance라고 불린다.

[Cost = mass \times distance]

original GAN과 목적함수의 차이를 비교하면,

name Discriminator Generator
GAN $\nabla_{\theta_d} \frac{1}{m} \sum^m_{i=1} \ [log D(x^{(i)}) + log (1-D(G(z^{(i)})))] $ $\nabla_{\theta_g} \ \frac{1}{m} \sum^m_{i=1} log (D(G(z^{(i)}))) $
WGAN $\nabla_w \frac{1}{m} \ \sum^m_{i=1} \ [f(x^{(i)}) + f(G(z^{(i)}))] $ $\nabla_{\theta} \frac{1}{m} \ \sum^m_{i=1} \ f(G(z^{(i)})) $

차이점이 더 있는데,

  • $f$는 k-Lipschitz function이어야 한다. 이를 위해 WGAN에서는 단순히 $[c, -c]$로 clipping한다.
  • log_sigmoid를 사용하지 않는다.

이제 WGAN 논문에 제시된 알고리즘을 보자.

알고리즘에 굉장히 특별하진 않다. optimizer로 RMSProp을 사용한 것이 약간의 차이점이다.

학습 과정에서의 장점을 보여주는 그림이 논문에 제시되어 있다. 두 Gaussian 분포를 볼 때 GAN의 수렴이 훨씬 잘 된다는 말이다.

WGAN 실험 결과를 보면 다음과 같다.

\(\\\) 사실 이 논문은 부록을 포함해 32page짜리 논문으로 수학이 넘쳐흐르지만, 필자의 논문 리뷰는 이 논문이 무슨 내용인지 정도만 전달하려는, 내용을 적당히 요약하여 보여주는 것이 목적이므로 자세한 수식 및 증명 과정은 따로 적지 않는다.

궁금하면 직접 읽으면 된다


Improved WGAN

논문 링크: WGAN_GP

2017년 3월 처음 제안되었다.

소스코드: pytorch

참고할 만한 사이트: 링크

WGAN은 clipping을 통해 Lipschitz 함수 제약을 해결하긴 했지만, 이는 예상치 못한 결과를 초래할 수 있다:

(WGAN 논문에서 인용)
만약 clipping parameter($c$)가 너무 크다면, 어떤 weights든 그 한계에 다다르기까지 오랜 시간이 걸릴 것이며, 따라서 D가 최적화되기까지 오랜 시간이 걸린다.
반대로 $c$가 너무 작다면, 레이어가 크거나 BatchNorm을 쓰지 않는다면 쉽게 vanishing gradients 문제가 생길 수 있다.

clipping은 단순하지만 문제를 발생시킬 수 있다. 특히 $c$가 잘 정해지지 않았다면 품질이 낮은 이미지를 생성하고 수렴하지 않을 수 있다. 모델의 성능은 이 $c$에 매우 민감하다.

가중치 clipping은 가중치를 정규화하는 효과를 갖는다. 이는 모델 $f$의 어떤 한계치를 설정하는 것과 같다.

그래서 이 논문에서는 gradient penalty라는 것을 D의 목적함수에 추가해 이 한계를 극복하고자 한다(G의 목적함수는 건드리지 않은 듯 하다).

[L = \mathbb{E}{\hat{x} \sim \mathbb{P}_g} \ [D(\hat{x})] - \mathbb{E}{x \sim \mathbb{P}r} \ [D(x)] + \lambda \ \mathbb{E}{\hat{x} \sim \mathbb{P}{\hat{x}}} \ [(\Vert \nabla{\hat{x}}D(\hat{x}) \Vert_2 - 1)^2 ]]

즉 clipping을 적용하는 대신 WGAN_GP는 gradient norm이 목표인 $1$에서 멀어지면 penalty를 주는 방식을 택했다.

  • Sampling Distribution: $\mathbb{P}_{\hat{x}}$는 실제 데이터 분포 $\mathbb{P}_r$과 G가 생성한 데이터 분포 $\mathbb{P}_g$로부터 추출한 point 쌍들 사이에 직선을 하나 그어서 얻은 것이다.
  • Penalty coefficient: $\lambda$가 붙은 마지막 항(이 논문에서는 $\lambda=10$으로 고정됨)이 gradient penalty이다.
  • No critic batch normalization: BN은 D의 문제의 형식을 1-1 매칭 문제에서 전체 batch input-batch output으로 바꿔버린다. 이 논문에서 새로 만든 gradient penalty 목적함수는 이 조건에 맞지 않기 때문에 BN을 쓰지 않았다.
  • Two-sided penalty: gradient가 단지 $1$ 아래로 내려가는 것을 막는(one-sided) 대신 $1$ 근처에 머무르도록 했다(two-sided).

그래서 발전시킨 알고리즘은 다음과 같다.

좀 특이하게도 이 논문에는 모델 구조(architecture)를 바꿔가면서 한 실험 결과가 있다. 확실히 WGAN_GP 버전이 뛰어남을 볼 수 있다.

WGAN_GP만이 (이 논문에서 실험한) 모든 architecture에 대해서 제대로 된 학습에 성공하였다고 한다.

여러 실험 결과들이 더 있지만 하나만 더 소개하면,
논문에서는 아래 이미지(LSUN-bedroom)가 지금까지의 연구에 의해 나온 것 중 제일 잘 나온 것이라고 믿는다고 한다. 각각의 이미지가 $128 \times 128 $ 크기라 그다지 고해상도는 아니긴 하지만 어쨌든 실제로 꽤 깨끗한 이미지로 보인다.

[\]

종합하면 이 개선된 버전은 데이터셋뿐만 아니라(WGAN) 모델 구조에 대해서도(architecture) 학습 안정성을 얻었다고 할 수 있다.


DRAGAN

논문 링크: DRAGAN

2017년 5월 처음 제안되었다.

소스코드: tensorflow, pytorch

참고할 만한 사이트: 링크

WGAN_GP 논문과 차이점은 D(critic network)에 의해 계산되는 식별함수 $f$가 gradient에 있어 어떤 제한을 받는가이다.

  • WGAN_GP에서는 gradient가 실제 데이터와 가짜 데이터 사이의 직선 위 랜덤한 곳으로 설정되기 때문에 모든 곳에서 $ \vert \nabla f \vert = 1 $를 향한다.
  • DRAGAN에서는 gradient가 실제에 “가깝게” sampling된다. 이는 실제 데이터 근처에 있을 때만 $ \vert \nabla f \vert = 1 $를 향한다.

아래 그림은 위 차이를 보여준다. 참고 사이트에서 가져왔다.

간단히 DRAGAN은 실제 데이터 분포(manifold)에 가까울 때만 gradient penalizing을 시켜 mode collapsing을 막을 수 있다.

$ \lambda $가 penalty hyperparameter로 사용되는데, 작은 $\lambda$는 toy tasks에 있어 특히 잘 학습됨을 볼 수 있다.

이 논문이 기여한 바는 다음과 같다:

  • AGD를 regret minimization으로 봄으로써 GAN 학습에 대한 추론을 제안하였다.
  • nonparametric 한계 안에서 GAN 학습의 점근적 수렴과 매 단계마다 D가 최적이어야 할 필요가 없다는 것을 증명하였다.
  • AGD가 비 볼록(non-convex) 게임에서 잠재적으로 어떻게 나쁜 국소평형 지점(local minima)으로 수렴하는지와 이것이 GAN의 학습에 있어 mode collapsing에 얼마나 큰 책임이 있는지를 논했다.
  • 실제 데이터에 근접한 경우에 D의 $f$의 gradient가 큰 값을 가질 때 어떻게 mode collapse 상황이 생기는지를 특징지었다.
  • 이러한 관찰에 의해 DRAGAN(a novel gradient penalty scheme)을 소개하였고 이것이 mode collapsing 문제를 완화해준다는 것을 보였다.

원래의 GAN들은, sample이 real data에 가까움에도 sharp gradient를 갖기 떄문에 mode collapse의 정의에 의해 이것이 나타난다. 이러한 sharp gradient는 G가 많은 $z$ 벡터들을 하나의 출력값 $x$로 가게끔 하고 따라서 형평성(equilibrium, mode collapse의 정의를 생각하라)을 약화시키도록 한다.
그래서 이러한 실패를 막으려면 D에게 다음과 같은 penalty를 줘서 gradient를 정규화시키는 것이다:

[\lambda \ \cdot \ \mathbb{E}{x \sim P{real}, \ \delta \sim N_d (0, \ cI)} [\Vert \nabla_X D_\theta(x+\delta) \Vert^2 ]]

이 전략은 GAN 학습의 안정성을 증가시킨다. 이 논문에는 그 결과와 그렇게 되는 이유가 설명되어 있으니 자세한 부분은 이를 참고하자.

그러나, 이 논문에서는 위의 penalty 식이 여전히 불안정하며 지나치게 penalty를 주는(over-penalized) 경우가 있을 수 있고, 따라서 D는 real point $x$와 noise인 $x+\lambda$에게 동일한 “실제 데이터일” 확률을 부여할 수 있다는 것을 발견하였다. 따라서 더 나은 gradient penalty 식은

[\lambda \ \cdot \ \mathbb{E}{x \sim P{real}, \ \delta \sim N_d (0, \ cI)} [ \ max(0, \ \Vert \nabla_X D_\theta(x+\delta) \Vert^2 - k )\ ]]

그리고, 실험적인 최적화를 적용한 최종 penalty 식은

[\lambda \ \cdot \ \mathbb{E}{x \sim P{real}, \ \delta \sim N_d (0, \ cI)} [ \ \Vert \nabla_X D_\theta(x+\delta) \Vert - k \ ]^2]

결과적으로 real data의 작은 동요(변화, perturbations)에도 잘 작동하였다.

이 논문에서 사용한 gradient penalty schemes 또는 heuristics는 DRAGAN algorithm으로 부르기로 하였다.


EBGAN

2016년 9월 처음 제안되었다.

논문 링크: EBGAN

이 논문에서는 D를 data manifold에 가까운 지점에서는 낮은 에너지를, 그렇지 않은 지점에서는 높은 에너지를 갖도록 하는 일종의 energy function으로 보는 Energy-Based GAN을 소개한다. 일반 GAN과 비슷하게 G는 최대한 낮은 에너지를 갖는(즉, 실제 데이터와 비슷한) sample을 생성하고, D는 G가 생성한 이미지들에는 높은 에너지를 부여하도록 한다.
D를 energy function으로 봄으로써 다양한 architecture과 loss function에 사용할 수 있게 되었다. 이 논문에서는 D를 auto-encoder로 구현하였다.
결과적으로 EBGAN은 학습이 더 안정적이며 또한 고해상도 이미지를 생성하는 데에도 능하다는 것을 보여주었다.

우선 Energy Based Model은,

  • LeCun이 2006년 제안하였으며
  • input space를 하나의 scalar(energy로 지칭된다)로 mapping하는 모델이다.
  • 학습이 제대로 된 경우 낮은 에너지를, 아니면 높은 에너지를 생성하며
  • CNN등의 학습에서 cross entropy loss를 사용하여 loss를 낮춰가는 것과 비슷하다. 여기선 loss랑 energy랑 비슷하게 사용된다.

간단히 이 Energy Based Model을 GAN에 적용시킨 것이 EBGAN이다.

이 논문의 contribution은,

  • GAN 학습에 energy-based를 적용시켰고
  • simple hinge loss에 대해, 시스템이 수렴했을 때 G는 데이터 분포를 따르는 point를 생성하게 된다는 증명과
  • energy를 reconstruction error로 본 auto-encoder architecture로 EBGAN framework를 만들었고
  • EBGAN과 확률적 GAN 모두에게 좋은 결과를 얻을 수 있는 시스템적 실험셋(hyperparameter 등)
  • ImageNet 데이터셋에 대해 256$\times$256 고해상도 이미질르 생성할 수 있음을 보여주었다.

목적함수는 다음과 같이 정의된다. $[\cdot]^+ = max(0,\ \cdot)$이다.

[\mathcal{L}_D(x, z) = D(x) + [m - D(G(z))]^{+}]

[\mathcal{L}_G(z) = D(G(z))]

EBGAN은 per-pixel Euclidean distance를 사용한다.

찾아낸 해가 optimum인지에 대한 증명은 Theorem 1과 2로 나누어져 증명이 논문에 수록되어 있다. 간략히 소개하기엔 꽤 복잡하므로 넘어간다.

D의 구조를 나타내면 다음과 같다.

왜 auto-encoder를 썼냐 하면:

  • D가 오직 0과 1 두 값만 낸다면 한 minibatch 안에서 많은 다른 sample들이 orthogonal에서 멀어질 것임을 뜻한다. 이는 비효율적인 학습을 초래하며, minibatch size를 줄이는 것은 현재 하드웨어 상으로 별로 좋은 옵션이 아니다. 그래서 이 대신 reconstruction-based output을 씀으로써 D에게 좀 더 다양한 target을 제공한다.
  • Auto-encoder는 전통적으로 energy-based model을 표현하는 좋은 모델이다. auto-encoder는 supervision이나 negative sample 같은 것 없이도 energy manifold를 잘 학습할 수 있다. 이는 EBGAN auto-encoding model이 실제 데이터를 복원하도록 학습했을 때, D는 그 data manifold를 스스로 찾아낼 수 있다는 뜻이다. 반대로 G로부터의 negative sample이 없다면 binary logistic loss로 학습된 D는 무의미하다는 뜻이기도 하다.

이 논문에서는 repelling regularizer라는 것을 제안하는데, 이는 모델이 겨우 몇 개의 $p_{data}$로 뭉쳐 있는 sample들을 생성하는 것을 고의로 막기 위한 것으로 EBGAN auto-encoder model에 최적화된 것이다.
Pulling-away Term, PT는 다음과 같이 정의된다:

[f_{PT}(S) = \frac{1}{N(N-1)} \sum_i \sum_{j \ne i} \Bigl( \frac{S_i S_j}{\Vert S_i \Vert \Vert S_j \Vert } \Bigr)^2]

PT는 minibatch 상에서 동작하고 쌍으로 sample representation을 orthogonalize하려고 한다. 논문에서는 PT로 학습된 EBGAN auto-encoder model을 EBGAN-PT라고 부르기로 하였다.

이 논문의 실험결과는 다른 GAN과는 약간 다르다. Inception score를 생성 품질을 측정하는 척도로 사용하여 GAN과 EBGAN의 생성 품질을 비교한 것이다. 점수가 높을수록 품질이 좋은 것이도, 각 막대그래프는 해당 점수를 가진 sample의 비율이 얼마나 되는지를 나타낸 것이다. 따라서 각 막대가 오른쪽에 많이 분포할수록 생성 품질이 좋다고 할 수 있다.
아래 그림은 일부만 가져온 것이다. 논문에서도 그림이 너무 작으니 pdf에서 확대해서 보라는 것을 추천하고 있다. 그림이 15개 정도 있는데, 실험 조건만 다를 뿐 대부분 비슷한 분포를 보이고 있다.

일반 GAN과 비교하면 MNIST 생성 품질도 확실히 좋은 것을 볼 수 있다.

또 LSUN, CELEBA, ImageNet 데이터셋에 대해서도 실험한 결과들이 논문에 실려 있다. 대부분의 이미지는 품질이 훨씬 좋고 선명한 이미지 품질을 볼 수 있다.


BEGAN

논문 링크: BEGAN

2017년 3월 처음 제안되었다.

구글이 내놓은 GAN 논문이다. 이 논문에서 중요한 특징 및 개선점은,

  • 모델 구조는 더 단순해졌고, 여전히 빠르고 안정적인 학습이 가능하다.
  • EBGAN을 바탕으로 해 energy와 auto-encoder를 사용한다. 다만 loss는 WGAN의 Wasserstein distance를 사용한다.
  • 대부분의 GAN이 ‘실제 데이터 분포’와 ‘가짜 데이터 분포’ 사이의 거리를 좁히기 위해 노력해왔다면, BEGAN은 ‘진짜 데이터에 대한 auto-encoder 데이터 분포’와 ‘가짜 데이터에 대한 auto-encoder 데이터 분포’ 사이의 거리를 계산한다.
  • D가 G를 압도하는 상황이 발생하는 것을 막기 위해 D와 G의 equilibrium을 조절하는 hyperparameter $\gamma$를 도입하였다. diversity ratio라고 부른다는데, 이것으로
    • auto-encoder가 데이터를 복원하는 것과 진짜/가짜를 구별하는 것 사이의 균형을 맞추고
    • $\gamma$가 낮으면 auto-encoder가 새 이미지를 생성하는 것에 집중한다는 것이므로 이미지 다양성이 떨어진다. 반대는 당연히 반대의 효과를 가진다.
    • 이 equilibrium 개념을 가져와서 수렴(즉, 학습)이 잘 되었는지를 판별하는 데 쓸 수도 있다.

이 논문은 결과에 비해 수식이 꽤 단순한 편이다.

auto-encoder의 Wasserstein distance 하한

우선 pixel-wise auto-encoder를 학습할 때 $ \mathcal{L}: \mathbb{R}^{N_x} \mapsto \mathbb{R}^+$ 를 정의하면,

$\mu_{1, 2}$를 auto-encoder loss의 두 분포라 하고, $\Gamma(\mu_1, \mu_2)$를 모든 $\mu_1$과 $\mu_2$의 결합들의 집합이라 하고, $m_{1, 2} \in \mathbb{R}$을 각 평균이라 하면, Wasserstein distance는

[W_1(\mu_1, \mu_2) = inf_{\gamma \in \Gamma(\mu_1, \mu_2)} \ \mathbb{E}_{(x_1, x_2) \sim \gamma} [\vert x_1 - x_2 \vert ]]

Jensen’s inequality를 써서

[inf \mathbb{E}[ \vert x_1 - x_2 \vert ] \geqslant inf \vert \mathbb{E}[x_1 - x_2] \vert = \vert m_1 - m_2 \vert]

데이터 분포 간 사이의 거리를 구하려는 것이 아니라 auto-encoder loss distribution의 Wasserstein distance를 구하려고 하는 것이라는 것을 알아둘 필요가 있다.

GAN의 목적함수에서, $\vert m_1 - m_2 \vert $를 최대화하는 것은 딱 두 가지인데, $m_1$이 0으로 가는 것이 auto-encoder가 실제 이미지를 생성하는 것으로 자연스럽기 때문에 선택한 것은 다음 중 (b)이다.

GAN의 목적함수를 정리하면,

[\mathcal{L}_D = \mathcal{L}(x;\theta_D) - \mathcal{L}(G(z_D;\theta_G);\theta_D) \qquad \text{for} \ \ \theta_D]

[\mathcal{L}_G = -\mathcal{L}_D \qquad \qquad \qquad \qquad \qquad \qquad \text{for} \ \ \theta_G]

참고: $ G(\cdot) = G(\cdot, \ \theta_G), \mathcal{L}(\cdot) = \mathcal{L}(\cdot ; \ \theta_D)$이다.

D와 G의 평형(equilibrium)

만약 평헝이 이루어졌다면 다음은 당연하다:

[\mathbb{E} [ \mathcal{L}(x)] = \mathbb{E}[\mathcal{L}(G(z))]]

한쪽이 지나치게 강해지는 것을 막기 위해, diversity ratio $\gamma$를 정의하였다:

[\gamma = \frac{\mathbb{E}[\mathcal{L}(G(z))]}{ \mathbb{E}[\mathcal{L}(x)] } \in [0, 1]]

이것으로 조금 위에서 말한 이미지의 다양성과 품질 간 trade-off, D와 G의 평형 등을 모두 얻을 수 있다.

BEGAN의 목적함수

  • $ \mathbb{E}[\mathcal{L}(G(z))] = \gamma \mathbb{E}[ \mathcal{L}(x)] $를 유지하기 위해 Proportional Control Theory를 사용하였다.
    • $k_t \in [0, 1]$를 사용하여 얼마나 경사하강법 중 $\mathcal{L}(G(z))$를 강조할 것인지를 조절한다.
    • $k_0 = 0$
    • t가 지날수록 값이 커진다.
  • $\lambda_k$는 learning rate와 비슷하다.

수렴 판별 방법

조금 전의 equilibrium 컨셉을 생각해서, 수렴과정을 가장 가까운 복원 $\mathcal{L}(x)$를 찾는 것으로 생각할 수 있다.

수렴 측정방법은 다음과 같이 표현 가능하다:

[\mathcal{M}_{global} = \mathcal{L}(x) + \vert \gamma \mathcal{L}(x) - \mathcal{L}(G(z_G)) \vert]

이는 모델이 잘 학습되어 최종 상태에 도달했는지, 아니면 mode collapsing했는지를 판별할 때 쓸 수 있다.

Model architecture

DCGAN과는 달리

  • batch norm
  • dropout
  • transpose convolution
  • exponential growth for convolution filters

등이 다 없다. 모델 구조가 상당히 단순함을 알 수 있다.

실험 결과

간단히 말하면..좋다.

예전에 DCGAN에서 봤던 interpolating도 잘 됨을 확인할 수 있다.


ACGAN

논문 링크: ACGAN

2016년 10월 처음 제안되었다.

DCGAN에서는 $z$가 속한 벡터공간의 각 차원별 특징은 사람이 해석할 수 없는 수준이다. 즉 $z$의 요소를 변화시킬 때 사진이 변화하는 형상은 알 수 있지만, 각각의 차원이 정확히 무슨 역할을 하고 어떤 특징을 갖는지는 알 수가 없다.
그러나 해석하기 쉬운 특징량(disentangled latend code)에 의존하는 모델들이 여럿 제안되었는데, 그것은 앞에서 설명했던 CGAN, ACGAN, infoGAN 등이 있다.

ACGAN이 original GAN 및 CGAN과 다른 점은,

  • D는 2개의 분류기로 구성되는데
    • 하나는 original GAN과 같은 real/fake 판별
    • 다른 하나는 데이터의 class 판별
  • 목적함수: 맞는 Source의 log-likelihood $L_S$, 맞는 Class의 log-likelihood $L_C$ 두 개로 나누어
    • $L_S$는 기존 GAN의 목적함수와 같다. 즉 real/fake를 판별하는 것과 관련이 있다.
    • $L_C$는 그 데이터의 class를 판별하는 것과 관련이 있다. CGAN에서 본 것과 약간 비슷하다.
    • D는 $L_S+L_C$를 최대화하고
    • G는 $L_C-L_S$를 최대화하도록 학습된다.

[L_S = E[log \ p(S=real \vert X_{real})] + E[log \ p(S=fake \vert X_{fake})]]

[L_C = E[log \ p(C=c \quad \ \vert X_{real})] + E[log \ p(C=c \ \ \quad \vert X_{fake})]]

실험은 ImageNet과 CIFAR-10에 대해 진행하였다고 한다. 결과는 (위의 BEGAN에 비해) 아주 놀랍지는 않아서(물론 예전 논문이다) 생략한다.

대신 실험 시 사용한 모델 구조를 가져왔다.


infoGAN

논문 링크: infoGAN

2016년 6월 처음 제안되었다.

original GAN은 input vector $z$에 어떠한 제한도 없이 단순히 무작위 값을 집어넣었기 때문에, 이러한 $z$의 각 차원은 역할이 분리되지 않고 심하게 꼬여(entangled) 있다.
그러나 이 domain들은 서로 다른 역할을 하는 여러 부분으로 분리될 수 있다.

그래서 이 논문에서는 noise 부분 $z$와, 데이터 분포의 가장 중요한 의미를 가지는 특징량(latent code) $c$ 두 부분으로 나누었다(CGAN과 비슷). 특징량은 설명 가능한 부분(semantic features), $z$는 원래의 것처럼 데이터를 생성하기 위한 incompressible noise이다.

G에 들어가는 input은 따라서 $G(z, c)$로 표시된다. 그러나 기존 GAN은 단지 $P_G(x \vert c) = P_G(x)$로 처리함으로써 특징량 $c$를 무시해버릴 수 있다. 따라서 정보이론적 정규화를 시행하도록 한다: $c$와 $G(z, c)$ 사이에는 아주 높은 상호정보량이 있기 때문에, $I(c;\ G(z,c))$ 역시 높을 것이다.

참고: 상호정보량은 다음과 같이 KLD로 측정한다. 서로 독립인 경우 0이 되는 것은 상호정보량의 이름에서 봤을 때 직관적이다.

[I(X;Y) = D_{KL}(p(x,y) \Vert p(x)p(y))]

그래서 목적함수는 다음과 같다.

[min_G max_D V_I(D, G) = V(D, G) - \lambda I(c; G(z, c))]

$V(D, G)$는 기존 GAN의 목적함수이다.

상호정보량은 쉽게 구하긴 어렵기 때문에, 논문에서는 이를 직접적으로 구하는 대신 하한을 구해 이를 최대화하는 방식을 썼다. 수식을 중간과정을 일부 생략하고 적으면

[I(c; G(z, c)) = H(c) - H(c \vert G(z, c)) = \mathbb{E}{x \sim G(z,c)} [ \mathbb{E}{c’ \sim P(c \vert x)}[log \ P(c’ \vert x)]] + H(c)]

[\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ \ \ge \mathbb{E}{x \sim G(z,c)} [ \mathbb{E}{c’ \sim P(c \vert x)}[log \ Q(c’ \vert x)]] + H(c)]

상호정보량 I(c; G(z, c))의 variational lower bound $L_I(G, Q)$를 정의할 수 있는데,

[L_I(G, Q) = E_{c \sim P(c), x \sim G(z, c)}[log \ Q(c \vert x)] + H(c)]

[\qquad \qquad \qquad \ = E_{x \sim G(z,c)} [ \mathbb{E}_{c’ \sim P(c \vert x)}[log \ Q(c’ \vert x)]] + H(c)]

[\le I(c; G(z, c)) \ \qquad \qquad \quad]

그래서 infoGAN은 아래 minimax game을 하는 것이 된다:

[min_{G, Q} max_D V_{\text{infoGAN}}(D, G, Q) = V(D, G) - \lambda L_I(G,Q)]

실험 결과

semantic features $c$를 적절히 조작하면 생성될 이미지에 어떤 변화를 줄 수 있는지를 중점적으로 보여주었다.
MNIST의 경우 숫자의 종류(digit), 회전, 너비 등을 조작할 수 있고, 사람 얼굴의 경우 얼굴의 각도, 밝기, 너비 등을 바꿀 수 있음을 보여주었다.

더 많은 결과는 논문을 참조하자.


이후 연구들

GAN 이후로 수많은 발전된 GAN이 연구되어 발표되었다.
GAN 학습에 관한 내용을 정리한 것으로는 다음 논문이 있다. Improved Techniques for Training GANs

또 다른 것으로는 PROGDAN, SLOGAN 등이 있다.


Comment  Read more